五大公式包括減法公式、加法公式、乘法公式、全概率公式、貝葉斯公式。
1、減法公式,P(A-B)=P(A)-P(AB)。此公式來自事件關系中的差事件,再結合概率的可列可加性總結出的公式。
2、加法公式,P(A+B)=P(A)+P(B)-P(AB)。此公式來自于事件關系中的和事件,同樣結合概率的可列可加性總結出來。學生還應掌握三個事件相加的加法公式。 以上兩個公式,在應用當中,有時要結合文氏圖來解釋會更清楚明白,同時這兩個公式在考試中,更多的會出現在填空題當中。所以記住公式的形式是基本要求。
3、乘法公式,是由條件概率公式變形得到,考試中較多的出現在計算題中。在復習過程中,部分同學分不清楚什么時候用條件概率來求,什么時候用積事件概率來求。比如“第一次抽到紅球,第二次抽到黑球”時,因為第一次抽到紅球也是未知事件,所以要考慮它的概率,這時候用積事件概率來求;如果“在第一次抽到紅球已知的情況下,第二次抽到黑球的概率”,這時候因為已知抽到了紅球,它已經是一個確定的事實,所以這時候不用考慮抽紅球的概率,直接用條件概率,求第二次取到黑球的概率即可。
4、全概率公式
5、貝葉斯公式
以上兩個公式是五大公式極為重要的兩個公式。結合起來學習比較容易理解。首先,這兩個公式首先背景是相同的,即,完成一件事情在邏輯或時間上是需要兩個步驟的,通常把第一個步驟稱為原因。其次,如果是“由因求果”的問題用全概率公式;是“由果求因”的問題用貝葉斯公式。例如;買零件,一個零件是由A、B、C三個廠家生產的,分別次品率是a%,b%,c%,現在求買到次品的概率時,就要用全概率公式;若已知買到次品了,問是A廠生產的概率,這就要用貝葉斯公式了。這樣我們首先分清楚了什么時候用這兩個公式。
那么,在應用過程中,我們要注意的問題就是,如何劃分完備事件組。通常我們用“因”來做為完備事件組劃分的依據,也就是看第一階段中,有哪些基本事件,根據他們來劃分整個樣本空間。
來源未注明“中國考研網”的資訊、文章等均為轉載,本網站轉載出于傳遞更多信息之目的,并不意味著贊同其觀點或證實其內容的真實性,如涉及版權問題,請聯系本站管理員予以更改或刪除。如其他媒體、網站或個人從本網站下載使用,必須保留本網站注明的"稿件來源",并自負版權等法律責任。
來源注明“中國考研網”的文章,若需轉載請聯系管理員獲得相應許可。
聯系方式:chinakaoyankefu@163.com
掃碼關注了解考研最新消息
網站介紹 關于我們 聯系方式 友情鏈接 廣告業務 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號