考研數學有四大重要定理證明需要大家熟練掌握,它們是微分中值定理的證明、求導公式的證明、積分中值定理和微積分基本定理的證明,下文我們來看的是微分中值定理的證明。
這一部分內容比較豐富,包括費馬引理、羅爾定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求會證。
費馬引理的條件有兩個:1.f'(x0)存在2.f(x0)為f(x)的極值,結論為f'(x0)=0?紤]函數在一點的導數,用什么方法?自然想到導數定義。我們可以按照導數定義寫出f'(x0)的極限形式。往下如何推理?關鍵要看第二個條件怎么用。“f(x0)為f(x)的極值”翻譯成數學語言即f(x)-f(x0)<0(或>0),對x0的某去心鄰域成立。結合導數定義式中函數部分表達式,不難想到考慮函數部分的正負號。若能得出函數部分的符號,如何得到極限值的符號呢?極限的保號性是個橋梁。
費馬引理中的“引理”包含著引出其它定理之意。那么它引出的定理就是我們下面要討論的羅爾定理。若在微分中值定理這部分推舉一個考頻最高的,那羅爾定理當之無愧。該定理的條件和結論想必各位都比較熟悉。條件有三:“閉區間連續”、“開區間可導”和“端值相等”,結論是在開區間存在一點(即所謂的中值),使得函數在該點的導數為0。
該定理的證明不好理解,需認真體會:條件怎么用?如何和結論建立聯系?當然,我們現在討論該定理的證明是“馬后炮”式的:已經有了證明過程,我們看看怎么去理解掌握。如果在羅爾生活的時代,證出該定理,那可是十足的創新,是要流芳百世的。
閑言少敘,言歸正傳。既然我們討論費馬引理的作用是要引出羅爾定理,那么羅爾定理的證明過程中就要用到費馬引理。我們對比這兩個定理的結論,不難發現是一致的:都是函數在一點的導數為0。話說到這,可能有同學要說:羅爾定理的證明并不難呀,由費馬引理得結論不就行了。大方向對,但過程沒這么簡單。起碼要說清一點:費馬引理的條件是否滿足,為什么滿足?
前面提過費馬引理的條件有兩個——“可導”和“取極值”,“可導”不難判斷是成立的,那么“取極值”呢?似乎不能由條件直接得到。那么我們看看哪個條件可能和極值產生聯系。注意到羅爾定理的第一個條件是函數在閉區間上連續。我們知道閉區間上的連續函數有很好的性質,哪條性質和極值有聯系呢?不難想到最值定理。
那么最值和極值是什么關系?這個點需要想清楚,因為直接影響下面推理的走向。結論是:若最值取在區間內部,則最值為極值;若最值均取在區間端點,則最值不為極值。那么接下來,分兩種情況討論即可:若最值取在區間內部,此種情況下費馬引理條件完全成立,不難得出結論;若最值均取在區間端點,注意到已知條件第三條告訴我們端點函數值相等,由此推出函數在整個閉區間上的最大值和最小值相等,這意味著函數在整個區間的表達式恒為常數,那在開區間上任取一點都能使結論成立。
拉格朗日定理和柯西定理是用羅爾定理證出來的。掌握這兩個定理的證明有一箭雙雕的效果:真題中直接考過拉格朗日定理的證明,若再考這些原定理,那自然駕輕就熟;此外,這兩個的定理的證明過程中體現出來的基本思路,適用于證其它結論。
以拉格朗日定理的證明為例,既然用羅爾定理證,那我們對比一下兩個定理的結論。羅爾定理的結論等號右側為零。我們可以考慮在草稿紙上對拉格朗日定理的結論作變形,變成羅爾定理結論的形式,移項即可。接下來,要從變形后的式子讀出是對哪個函數用羅爾定理的結果。這就是構造輔助函數的過程——看等號左側的式子是哪個函數求導后,把x換成中值的結果。這個過程有點像犯罪現場調查:根據這個犯罪現場,反推嫌疑人是誰。當然,構造輔助函數遠比破案要簡單,簡單的題目直接觀察;復雜一些的,可以把中值換成x,再對得到的函數求不定積分。
來源未注明“中國考研網”的資訊、文章等均為轉載,本網站轉載出于傳遞更多信息之目的,并不意味著贊同其觀點或證實其內容的真實性,如涉及版權問題,請聯系本站管理員予以更改或刪除。如其他媒體、網站或個人從本網站下載使用,必須保留本網站注明的"稿件來源",并自負版權等法律責任。
來源注明“中國考研網”的文章,若需轉載請聯系管理員獲得相應許可。
聯系方式:chinakaoyankefu@163.com
掃碼關注了解考研最新消息
網站介紹 關于我們 聯系方式 友情鏈接 廣告業務 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號